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ABSTRACT

Evapotranspiration (ET) is a key process affecting terrestrial hydroclimate, as it modulates the land surface

carbon, energy, and water budgets. Evapotranspiration mainly consists of the sum of three components: plant

transpiration, soil evaporation, and canopy interception. Here we investigate how the partitioning of ET into

these threemain components is represented in CMIP5model simulations of present and future climate. A large

spread exists between models in the simulated mean present-day partitioning; even the ranking of the different

components in the globalmean differs betweenmodels. Differences in the simulation of the vegetation leaf area

index appear to be an important cause of this spread.AlthoughETpartitioning is not accurately known globally,

existing global estimates suggest that CMIP5 models generally underestimate the relative contribution of

transpiration. Differences in ET partitioning lead to differences in climate characteristics over land, such as

land–atmosphere fluxes and near-surface air temperature. On the other hand, CMIP5 models simulate robust

patterns of future changes in ET partitioning under global warming, notably a marked contrast between de-

creased transpiration and increased soil evaporation in the tropics, whereas transpiration and evaporation both

increase at higher latitudes and both decrease in the dry subtropics. Idealized CMIP5 simulations from a subset

of models show that the decrease in transpiration in the tropics largely reflects the stomatal closure effect of

increased atmospheric CO2 on plants (despite increased vegetation fromCO2 fertilization), whereas changes at

higher latitudes are dominated by radiative CO2 effects, with warming and increased precipitation leading to

vegetation increase and simultaneous (absolute) increases in all three ET components.

1. Introduction

Evaporation of water from the land to the atmosphere

is a key process regulating and coupling the carbon,

energy, and water budgets of the land surface. As such, it

is critical that land evaporation be represented accu-

rately inmodel simulations of the physical climate and in

Earth system model simulations of the coupled carbon

cycle and climate system.

Representing the land–atmosphere fluxes of water

and energy in response to available energy (e.g., radia-

tion) and water input (e.g., precipitation) is the primary

task of the land surface component of climate models.

The representation of land evaporation is challenging

because part of this flux occurs through vegetation

(plant transpiration) and part of it occurs through abi-

otic processes. The latter include evaporation from bare

soil and evaporation from water intercepted and stored

on the canopy following precipitation events (hereafter

referred to as canopy interception). These fluxes result

from different processes, and thus respond differently to

environmental drivers. For instance, canopy intercep-

tion depends on the structural properties of vegetation

and precipitation characteristics (e.g., Miralles et al.

2010); transpiration differs from soil evaporation in that

plants have access to deeper reservoirs of water, and

stomatal conductance can vary in response to specific

environmental drivers like atmospheric CO2 and hu-

midity. As a result, the total flux, called evapotranspi-

ration (ET), is usually represented in land surface
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models as the sum of these three main terms, calculated

separately (other more minor terms in the annual mean

include evaporation from snow, and evaporation from

open water on land such as lakes and rivers).

Because of the complexity of the land–atmosphere

interface, the historical lack of observational constraints

on land–atmosphere exchanges, and the different mod-

eling choices made in the representation and parame-

terization of land surface processes, climate models

show large differences in their simulation of land–

atmosphere fluxes, including ET (e.g., Mueller and

Seneviratne 2014, and references therein). Much re-

search has been directed over the past decade toward

evaluating the representation of ET in climate models,

based on global land ET products derived from obser-

vations, such as remote sensing data, upscaled in situ

measurements, and/or land surface models driven by

observations (e.g., Mueller et al. 2013). Perhaps less at-

tention has been devoted, until recently, to assessing in

more detail howmodels represent the partitioning of ET

into its three main components. An obvious challenge to

such an assessment is that the partitioning of ET is not

accurately known at the global scale: large-scale, ex-

tensive observations of the different ET components are

simply not available. Indeed, ET components can be

measured in situ by different techniques, such as

through a combination of stable isotope, sap flow, and

eddy covariation techniques (Williams et al. 2004; Kool

et al. 2014); however, such observations remain sparse

for now and are affected by methodological un-

certainties. Because ET cannot be directly sensed from

space, global ET products based on remote sensing in-

clude some amount of modeling to retrieve ET based on

observable variables; because of different modeling as-

sumptions, they produce vastly different estimates of ET

partitioning (Miralles et al. 2016). More recently, global

estimates of the fraction of transpiration in ET have

been proposed, based on different approaches including

isotopic techniques (Jasechko et al. 2013; Coenders-

Geritts et al. 2014; Good et al. 2015), as well as available

direct observations upscaled based on global vegetation

distribution (Wei et al. 2017). Schlesinger and Jasechko

(2014) and Wei et al. (2017) provide reviews of all these

approaches, as well as of available in situ observations

(Wang et al. 2014): while they indicate a wide range of

estimates for the global fraction of transpiration, from

25% to 90%, estimates coalesce around a central value

of around 60%, which thus arguably represents our best

knowledge, at this point, of the global role of transpi-

ration. By complementarity, this also constrains the

relative size of the soil evaporation and canopy in-

terception components. Independent global estimates of

canopy interception over forests have been proposed

that are broadly consistent with such values (e.g., 10%–

20% of precipitation is intercepted by forest canopies;

Miralles et al. 2010). However, the exact global role of

soil evaporation and canopy interception remains un-

certain as well. It should be noted that on a regional

scale soil evaporation and canopy interception may be

significant or even dominant terms. Overall, knowledge

of ET partitioning at the global scale remains poorly

constrained, beyond the general orders of magnitude of

the different terms.

In the present study, we focus on investigating the

representation of ET partitioning in current-generation

climate models, using the models from phase 5 of the

Coupled Model Intercomparison Project (CMIP5).

Some studies have analyzed ET partitioning within a

given climate model (e.g., Lawrence et al. 2007). More

recently, Lian et al. (2018) and Chang et al. (2018) have

compared the fraction of transpiration in ET from cli-

mate models to site measurements, and have analyzed

systematic biases. Here, we explore model spread in the

representation of the different terms of ET partitioning.

Because of the limitation of global observational con-

straints on the different ET components, we do not seek

here to explicitly evaluate ET partitioning in climate

models in detail [beyond the central estimate of tran-

spiration fraction from Wei et al. (2017)]. Rather, we

aim to document the diversity in ET partitioning across

CMIP5 models. Because ET partitioning is strongly

linked to vegetation (e.g., Wang et al. 2010, 2014), we

explore how this diversity is linked to differences in

simulated vegetation across models.We also explore the

potential relationships between the spread in ET parti-

tioning and general aspects of the simulated climate in

these models. Finally, we investigate what future

changes in partitioning models simulate in response to

anthropogenic forcing and global warming and what

factors are driving these changes.

2. Data and methods

We use monthly outputs from historical and repre-

sentative concentration pathway 8.5 (RCP8.5; Riahi

et al. 2011) simulations from the CMIP5 experiment.We

choose the RCP8.5 simulation to maximize the pro-

jected changes in the future and the potential differ-

ences between models. We analyze the following

variables: total ET and its components (transpiration,

soil evaporation, and canopy interception) and surface

climate variables such as 2-m temperature and turbulent

and radiative land–atmosphere fluxes. For vegetation

data, we focus primarily on the leaf area index (LAI).

Indeed, LAI is the primary vegetation-related variable

considered in studies that investigate the influence of
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vegetation on ET partitioning (e.g., Wang et al. 2014), as

the surface area of vegetation directly affects transpi-

ration and canopy interception, and indirectly soil

evaporation (by covering the ground). Other vegetation

properties that may differ across models may influence

ET partitioning (e.g., stomatal conductance) but are not

analyzed here. Data for the historical simulations are

analyzed over 1950–2005, and for RCP8.5 over 2071–

2100. For models for which several ensemble members

are available, we only use the first member (‘‘r1’’ in the

CMIP5 archive). We compute annual means as well as

summertime means [summertime being defined as

June–August (JJA) in the Northern Hemisphere and

December–February (DJF) in the Southern Hemisphere].

ET outputs from the historical simulations were

available from 48 CMIP5 models. Not all models pro-

vided all three variables of ET partitioning, either be-

cause of omissions or because these variables are simply

not provided by the models themselves, or because of

errors in the reporting (e.g., the sum of two components

was reported under one variable). Where possible, out-

puts were corrected to account for obvious errors in

reporting (e.g., one variable was subtracted from the sum

of the two in the other file). Overall, complete ET par-

titioning was available for 32 models from the historical

simulations. For the RCP8.5 simulations, 24 models

provided ET partitioning. LAI was available for 30

models in the present, and 27 models in the future. At-

mospheric and land–atmosphere flux variables were

typically available for more than 40 models. Models used

are listed in Table S1 in the online supplemental material.

To analyze the relationship between ET partitioning

and other aspects of model simulations, such as vege-

tation or surface climate, we compute cross-model

(Pearson) correlations. That is, for a given pair of vari-

ables, we compute the correlation across models be-

tween long-term means for these variables, on a pixel

per pixel basis. Note that the ensembles of models

available do not necessarily overlap similarly for each

pair of variables; in the interest of maximizing the

number of models used in these correlations (given the

overall low number of available models), for each vari-

able that we cross with ET partitioning, we use the

maximum number of common models available. Thus,

rather than having a common set of models for the

whole analysis, the number of models considered for

different combinations of variables differs slightly; given

that the number of models to be included in these cor-

relations is not large, we favor including as manymodels

as possible in our analysis (the number of models used is

indicated in each figure’s caption).

Finally, we also analyze outputs from idealized single-

forcing CMIP5 experiments meant to separate the total

effect of atmospheric CO2 increase on climate into the

radiative effect of CO2 on the atmosphere and the

physiological effect of CO2 on vegetation. In the con-

trol simulation (1pctCO2 in CMIP5 terminology), both

the atmospheric model and the land surface scheme of a

climate model are subjected to a 1% annual increase

of atmospheric CO2 starting from preindustrial levels

(284 ppm) and lasting 140 years (ending at 1132 ppm).

In simulation esmFixClim1, only the vegetation mod-

ule experiences the increase in CO2, while the atmo-

sphere continuously experiences preindustrial CO2 levels.

Conversely, in simulation esmFdbk1, only the atmo-

sphere experiences the increase in CO2, while vegeta-

tion continuously experiences preindustrial CO2 levels.

The simulation esmFixClim1 thus isolates the impact of

CO2 increase on climate through the physiological effect

of CO2 on vegetation (which affects land–atmosphere

fluxes and thus feeds back on the atmosphere), while

esmFdbk1 isolates the radiative effect only of CO2 in-

crease on climate. We thus hereafter refer to simula-

tions 1pctCO2, esmFixClim1, and esmFdbk1 as CTL,

PHYS, and RAD, respectively. These simulations and

the corresponding decomposition of CO2 effects into

physiological and radiative parts in CMIP5 models

have been used in previous studies (e.g., Swann et al.

2016; Lemordant et al. 2018), although ET parti-

tioning specifically has not been investigated. For

each run we analyze the first 20 years and the last 20

years of the simulations to obtain the corresponding

changes (note that CO2 concentrations in the RCP8.5

scenario reach around 935 ppm by the year 2100).

Only six models took part in these experiments and

provided all the outputs necessary for our analysis

(including ET partitioning): BCC-CSM1.1, CanESM2,

CESM1(BGC), GFDL-ESM2M, IPSL-CM5A-LR, and

NorESM1-ME.

Finally, for all simulations, all model output is regridded

to a common 28 3 28 grid before analysis.

3. Results

a. Mean ET partitioning in CMIP5 models

Figure 1 shows the mean annual surface evaporation

in CMIP5models and its partitioning into transpiration,

soil evaporation, and canopy interception. Reflecting

the overall zonal pattern of wet and dry regions, land

ET (Fig. 1a) is highest in equatorial regions (where it

can be locally higher than over oceans; not shown) and

lowest in dry subtropical regions, and in some regions

like Eurasia it reaches a secondary maximum at middle

to high latitudes. The overall pattern of ET partitioning

largely reflects the role of vegetation in favoring one
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pathway of evaporation over another. The dominant

term is transpiration (Fig. 1b), reaching 40%–60% of

ET in the tropics, in many parts of the midlatitudes, and

in Southeast Asia. This primarily corresponds to the

distribution of vegetation around the globe (Fig. 2a):

more vegetation leads to more of total ET to occur as

transpiration. However, as vegetation gets denser

(higher LAI), the fraction of transpiration tends to

saturate in the models (Fig. 2b). For instance, in the

tropics, where vegetation is the densest, the share of

transpiration is not much greater than in the mid-

latitudes. This is because canopy interception starts to

play a significant role as LAI increases (Fig. 2c): pre-

cipitation rates and high LAI values are typically the

two drivers of canopy interception parameterization in

climate models (e.g., Lawrence et al. 2007). In the

tropics, with high rainfall and high LAI, canopy in-

terception amounts to 30%–40% of total ET (Fig. 1c).

Canopy interception also represent a large fraction of

ET in some high-latitude regions like Alaska/western

Canada or Scandinavia, even though total LAI is lower

than in the tropics. We speculate that this is because

these are climatic regions where rainfall is dominated

by long-duration synoptic events, where low-intensity

rainfall favors continuous wetting of the canopy, as

opposed to tropical regions where rainfall is dominated

by shorter-duration, convective events with higher

rainfall rates that may be less conducive to canopy in-

terception (Miralles et al. 2010). Overall, while the

fraction of transpiration tends to saturate as a function

of LAI, the fraction of canopy interception increases

more linearly. We note that, since canopy interception

parameterizations are typically not linear functions

of LAI (e.g., Lawrence et al. 2007), this apparent line-

arity may emerge as a result from combined regional

variations in, for example, LAI and precipitation

characteristics.

Finally, soil evaporation is the dominant term in dry

subtropical regions with little vegetation, such as Aus-

tralia, southern Africa, or western North America,

reaching up to 60%of total ET, and up to 100% in desert

regions like the Sahara and theMiddle East (Fig. 1d). In

these regions total ET is low (Fig. 1a). The fraction of

soil evaporation decreases rapidly in models as LAI

initially increases (Fig. 2d) but still represents around

10% of ET in the tropics, and between 20% and 40% in

FIG. 1. Multimodel mean annual mean values over 1950–2005 of (a) ET (mmday21) and fractions of (b) transpiration, (c) canopy in-

terception, and (d) soil evaporation in total ET. A total of 32 models with full ET partitioning are used.
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many midlatitude regions, as well as monsoon regions

like India and the Sahel.

b. Model spread in ET partitioning in CMIP5 models

CMIP5 models generally share the same first-order

spatial patterns of ET partitioning. However, there is a

large spread in amplitude across models. Figure 3 shows

the mean partitioning averaged over the whole land

surface and the distribution across CMIP5 models.

Transpiration is the dominant term, accounting for 42%

of total ET. Soil evaporation comes in second, with a

mean value 35%, and canopy interception is third, with a

mean value of 22%. However, the fraction of transpi-

ration, for instance, extends from nearly 15%–60%. The

fraction of soil evaporation extends from 13% to 63%.

Model differences extend to the very rank of the three

components: while most models agree on the order of

terms as shown in Fig. 3, in some models soil evapora-

tion is the leading term, whereas in other it comes

last, after canopy interception, and in some models

transpiration is the smallest term (Fig. S1). We discuss

the realism of these different ET partitioning values in

the discussion section.

Figure 4 shows the spatial pattern of how the model

spreads in the different ET components relate to each

other, displaying cross-model correlations between the

different terms. Generally, the transpiration and soil

evaporation fractions are strongly negatively correlated

everywhere (Fig. 4a): models with a greater transpiration

fraction tend to have a smaller soil evaporation fraction. In

many regions of the tropics and midlatitudes, higher

transpiration fractions also come at the expense of canopy

interception (Fig. 4b).However, in dry subtropical regions,

as well as drymidlatitude regions and at high latitudes, the

fractions of transpiration and canopy interception are

positively correlated, both then being negatively corre-

lated with the fraction of soil evaporation (Fig. 4c).

Figure 5 shows that these intermodel differences can,

to some extent, be linked to differences in the model

representation of vegetation. The large majority of

FIG. 2. (a) Multimodel mean annual LAI over 1950–2005. Also shown are the relationships between the multimodel mean LAI and the

multimodel mean fraction of (b) transpiration (Tran), (c) canopy interception (Ecan), and (d) soil evaporation (Esoil). Each dot cor-

responds to a land pixel. The full line is a binned average. Multimodel means are calculated for the 22 commonmodels for which all three

components of ET and LAI were available.
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climate models simulate vegetation and LAI interac-

tively with climate, although a few use prescribed LAI

(ACCESS1.0 and ACCESS1.3, FIO-ESM, MIROC4h,

and MIROC5). Previous studies have found a large

range of LAI values across models (e.g., Mahowald et al.

2016). Here global mean model LAI ranges (over the 22

models for which we have both LAI and ET partition-

ing) from 0.9 to 3.1, with a median of 2.1. Figure S2

shows the model spread is largest, numerically, in re-

gions of higher LAI (e.g., tropics), although when nor-

malized by mean LAI the model spread is actually

greatest, in relative terms, in drier areas and in the high

latitudes. The fraction of transpiration is generally pos-

itively correlated, locally, with the amount of vegetation

(LAI) in models (Fig. 5a); so is the fraction of canopy

interception (Fig. 5c). The sum of both is thus clearly

positively correlated with vegetation (Fig. 5d). In con-

trast, the fraction of soil evaporation is clearly negatively

correlated with LAI across models (Fig. 5b). These re-

lationships are consistent with those established in Fig. 2

for the multimodel mean pattern of partitioning, and

likely stem from similar processes: higher LAI favors

transpiration and canopy interception at the expense of

soil evaporation. Thus, not only does simulated vegetation

explain the mean pattern of simulated ET partitioning, it

also affects intermodel differences in partitioning. The role

of vegetation also explains the patterns seen in Fig. 4:

since vegetation is a main determinant (positively) of

the transpiration fraction and (negatively) of the soil

evaporation fraction, both fractions are necessarily anti-

correlated across models (Fig. 4a); in addition, in dry

regions where mean LAI is low, both the transpiration

and canopy interception fractions increase with higher

LAI (presumably associated with increased precipita-

tion as well) and are thus positively correlated across

models (Fig. 4b).

c. Relationship between ET partitioning and surface
climate in CMIP5 models

Does thewayCMIP5models simulate ET partitioning

influence the characteristics of their simulated surface

climate? Indeed, transpiration, soil evaporation, and

canopy interception respond differently to atmospheric

variability, with potential implications for feedbacks

from the surface to the atmosphere. Typically, the time

scale of the evaporation response to a rain event can be

expected to decrease from transpiration to soil evapo-

ration and canopy interception: the superficial canopy

water store is depleted most quickly, followed by soil

evaporation (which mostly draws water from the first

top centimeters of the soil) and transpiration, since

plants have access to deeper and larger soil water stor-

age.MeanETproperties can thus be affected by howET

partitioning is simulated, with attendant feedbacks on

surface climate. Lawrence et al. (2007) and Williams

et al. (2016) report changes in land–atmosphere cou-

pling and surface climate characteristics (e.g., changes in

the frequency distribution of precipitation) when de-

liberately altering ET partitioning in their model. Sim-

ilar effects might thus be at play across the CMIP5

ensemble of models, with differences in ET partitioning

feeding back on characteristics of surface climate. Here

we explore these effects, investigating first potential

differences in summertime temperature, as this is the

variable most likely to be affected by land–atmosphere

processes (e.g., Berg et al. 2014).

Exploring potential climate differences induced by

differences in ET partitioning between models is made

challenging by the compounding effect of model dif-

ferences in surface climate and surface fluxes that exist

independently of ET partitioning. In particular, any

feedback from ET partitioning on surface climate may

be compounded by concurrent differences in total ET.

Figure 6a shows that, indeed, summertime ET parti-

tioning is partly correlated across models with mean ET

(in summer): models that simulate greater ET tend to

also be the ones showing greater fractions of transpira-

tion in some parts of the subtropics and midlatitudes,

with correspondingly smaller fractions of soil evapora-

tion. We interpret these relationships as mostly reflect-

ing the impact of differences in precipitation in driving

simultaneous and mutually reinforcing differences in

FIG. 3. Mean value and spread across CMIP5 models of the

global fraction of each ET component (% of total ET). Ecan:

canopy interception; Esoil: soil evaporation; Tran: transpiration; 32

models with full ET partitioning are used. The thick line represents

the median of the distribution, the central dot the mean, and the

edges of the box the 25% and 75% quantiles. Whiskers represent

the total model range.
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FIG. 4. Cross-model correlation of the mean annual fractions of (a) transpiration and

soil evaporation, (b) transpiration and canopy interception, and (c) soil evaporation and

canopy interception; 32 models with full ET partitioning are used. Red and blue contour

lines indicate positive and negative correlations, respectively, that are significant at the

5% level.
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vegetation, transpiration, and overall ET. For instance,

wetter models may simulate more vegetation, thus in-

creasing the transpiration fraction; since plants access

greater soil water stores, greater transpiration may also

help to sustain even higher ET, in particular throughout

the summer. On the other hand, model differences in ET

lead to differences in near-surface temperature across

models (as greater evaporative cooling cools the surface;

Fig. S3). Thus, cross-model correlations between near-

surface climate andET partitioningmay emerge that are

primarily due to model differences in precipitation and

ET, rather than independent differences in ET parti-

tioning. We subsequently try to control for this effect

when investigating the relationship between ET parti-

tioning and other variables, by using partial correlations

controlling for model differences in ET.

Figure 6b shows the partial correlation between ET

partitioning and mean summertime 2-m temperature

across CMIP5 models, controlling for differences in

mean (summertime) ET. The partial correlation is the

correlation between the residuals from two regressions

between, on the one hand, model ET and ET parti-

tioning (whose correlation is shown on Fig. 6a) and, on

the other hand, mean ET and mean temperature (cor-

relation shown in Fig. S3). It thus isolates the relation-

ship between model differences in ET partitioning and

temperature after removing the influence of model dif-

ferences in mean ET. Figure 6b shows that over many

regions, greater transpiration fractions and lower soil

evaporation fractions are associated with lower mean

summertime temperature. This is particularly the case

for soil evaporation fractions over southern Africa,

South and North America, and many parts of Asia.

Because we control for differences in mean ET between

models, we interpret this correlation as primarily reflecting

a feedback from ET partitioning on near-surface air tem-

perature. We note that if we did not control for ET, pat-

terns of the correlation between 2-m temperature and, for

instance, the transpiration fractionwould look significantly

different, mostly reflecting both the relationships across

models betweenETand temperature and betweenET and

transpiration fraction (Fig. S4).

FIG. 5. Cross-model correlation of mean LAI and (a) transpiration fraction, (b) soil evaporation fraction, and (c) canopy interception

fraction, and (d) the sum of the canopy interception and transpiration fractions; 22 common models with available LAI and ET parti-

tioning outputs were used. Red and blue contour lines indicate positive and negative correlations, respectively, that are significant at the

5% level.
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When considering simple cross-model correlations,

lower transpiration and greater soil evaporation frac-

tions are generally associated, as expected, with higher

sensible heat flux (consistent with reduced ET; Fig. S4).

However, when controlling for model differences in

mean ET, the correlation pattern is more complex, with

both reduced and increased sensible flux values (Fig. 6c).

In particular, the partial correlation of soil evaporation

fractions with sensible heat flux values (controlling for

ET) is nil or negative in the midlatitudes. This means

that for a given level of ET, models that have greater soil

evaporation fractions actually show reduced sensible

heat flux values. This lack of overlap with Fig. 6b

suggests that the relationship between soil evaporation

and transpiration fractions and 2-m temperature in

Fig. 6b is not simply explained by associated model

differences in sensible flux, except to some extent in

the tropics. Rather, the overlap between Figs. 6b and

6d—which shows the partial correlation between ET

partitioning and upwelling surface longwave radiation—

suggests that part of the relationship between ET parti-

tioning and 2-m temperature (Fig. 6b) stems from the

effect of differences in emission of longwave radiation. In

other words, for a given level of ET, greater soil evapo-

ration fractions, for instance, lead to greater near-surface

air temperature also because they are associated with a

FIG. 6. (a) Cross-model correlation between summertime-mean ET and ET component fractions (columns). Also shown are cross-

model partial correlations between summertime-mean ET component fractions and (b) 2-m temperature (Tas), (c) surface sensible heat

flux (Hfss), and (d) surface upwelling longwave radiation (RLUS), controlling in each case for mean summertime ET (as indicated by the

subscript in the left hand-side labels; see text for details). Summertime is defined as JJA in the Northern Hemisphere and DJF in the

SouthernHemisphere, with means taken over 1950–2005. A total of 29 commonmodels for which all variables were available are used for

all correlations. Red and blue contour lines indicate positive and negative correlations, respectively, that are significant at the 5% level.
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greater share of the incoming surface energy being re-

emitted as longwave radiation, thus with higher surface

temperatures and higher near-surface temperatures

(no such relationship was found between ET parti-

tioning and net shortwave radiation or albedo;

not shown).

Overall, Fig. 6 shows that, beyond the feedback of

differences in mean model ET on surface climate

(Fig. S3), differences in how a given level of ET is par-

titioned are also associated with differences in land–

atmosphere fluxes and thus in mean surface climate

across CMIP5 models, with the most plausible inter-

pretation being that differences in partitioning, mostly

related to differences in vegetation (section 3b), feed

back on surface climate.

d. Future changes in ET partitioning in CMIP5
models

Figure 7 showsmultimodel mean projected changes in

ET and precipitation (using a subset of models for which

outputs of future ET partitioning are available).

Changes in precipitation have been largely documented

and analyzed elsewhere (e.g., Scheff and Frierson 2012),

with decreases in the dry subtropics and some parts of

the tropics (e.g., Central and South America), and in-

creases at middle to high latitudes. Here, we simply note

that there is, to leading order, a qualitative correspon-

dence between changes in precipitation and ET, with

similar-sign changes in ET as in precipitation. We also

note that changes in ET in regions of negative pre-

cipitation change tend to be of smaller magnitude than

precipitation changes, implying a negative change in

runoff. Here we investigate how changes in ET are re-

alized in terms of ET partitioning.

While there is a large spread between models in the

simulation of the present-day mean ET partitioning

(section 3b), Fig. 8 shows that CMIP5 models project

robust future changes in partitioning, with more than

three-quarters of the models agreeing on the sign of

changes in most regions. In the middle and high lati-

tudes, as well as over the Tibetan Plateau, all three

components ofET increase in absolute value (Figs. 8a–c).

However, transpiration increases more than soil evapo-

ration, so that the fraction of transpiration increases

while the fraction of soil evaporation decreases over

most of these regions (Figs. 8d–f). Exceptions to this

pattern include parts of Europe, northeast China, and

the eastern United States, where it is the fraction of soil

evaporation that increases (although transpiration still

increases in absolute terms). Absolute increases in all

three components are consistent with increases in pre-

cipitation in these regions. This precipitation-driven be-

havior also explains changes in dry tropical regions

where precipitation increases, such as the Sahel and

eastern Africa. Similarly, some dry subtropical regions,

such as theMediterranean basin, the southwestern United

States, and southern Africa, see simultaneous decreases

in all three terms, reflecting decreases in projected pre-

cipitation. In these regions transpiration typically decreases

more, so that the fraction of soil evaporation actually

increases.

In contrast, large parts of the humid tropics show op-

posite absolute changes in ET components, with con-

comitant absolute decreases in transpiration (Fig. 8a) but

increases in soil evaporation (Fig. 8b) (changes in canopy

interception being more muted). As a result the fraction

of transpiration decreases (Fig. 8d), and the fraction of

soil evaporation increases (Fig. 8e). This is the case in the

Amazon, tropical West Africa and central Africa, the

Maritime Continent, and Southeast Asia.

Globally, Fig. 9a shows that soil evaporation and

canopy interception increase on average (in absolute

FIG. 7. Multimodel mean change (mmday21) in (a) annual mean precipitation and (b) annual mean ET, defined as 2071–2100 minus

1950–2005. For consistency with Fig. 8, 24 models with full ET partitioning outputs for RCP8.5 were used. For readability, colors saturate

beyond the color scale range on (a).
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values), with soil evaporation increasing the most; the

mean change in transpiration, however, is close to zero,

with the largest intermodel uncertainty as quantified by

the 25% and 75% quantiles. Overall, total ET increases

by 0.07mmday21 on average (an increase of around 5%

of the present-day mean of 1.5mmday21). As a result,

the fraction of transpiration decreases globally (Fig. 9b).

In the tropics specifically, regional averages reflect the

behavior described above for global averages: absolute

transpiration decreases, which is offset to some extent

by increases in soil evaporation. Mean ET does not

increase, on average. The fraction of transpiration de-

creases by a mean of 22.3%, with only two models

showing an increase.

e. CO2 fertilization and future changes in ET
partitioning

Figure 10 shows the spatial patterns of how the model

spreads in the projected changes in the different ET

components relate to each, with cross-model correla-

tions. Globally, patterns are similar to those for present-

day partitioning (Fig. 4): across models, changes in

FIG. 8. Multimodel mean change (mmday21) between 1950–2005 and 2071–2100 in (a) transpiration, (b) soil evaporation, and

(c) canopy interception (mmday21). (d)–(f) As in (a)–(c), but as a fraction of ET. Stippling indicates where more than 80% of models

agree on the sign of changes. A total of 24 models with full ET partitioning in present and future were used to compute changes.
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transpiration fractions and canopy interception frac-

tions go hand in hand in most regions at the expense of

changes in soil evaporation fractions, except in the

tropics where changes in the fractions of soil evapora-

tion and canopy interception are both negatively cor-

related with changes in transpiration fraction.

Given the role of vegetation in explaining both the

mean pattern and the intermodel differences in ET

partitioning, we similarly investigate the correlation

across models between changes in LAI and changes in

ET partitioning. Figure 11a shows that, overall, LAI

increases around the globe in model projections, in-

cluding in the tropics. This projected increase has been

noted before (e.g., Mahowald et al. 2016) and is

consistent with the large land carbon sink projected by

Earth system models (Friedlingstein et al. 2014). It is

also qualitatively consistent with the observed ‘‘global

greening’’ trend in remote sensing data over the last

decades (Zhu et al. 2016). Globally, the relationship

between changes in LAI and changes in ET partitioning

is consistent with results from sections 3a and 3b, al-

though more muted (Figs. 11b–d): models where LAI

increases the most tend to see greater increases in

transpiration fraction and fraction of canopy intercep-

tion, and lower increases in soil evaporation fraction.

However, the relationship between changes in LAI and

change in the transpiration fraction tends to break down

in the tropics.

FIG. 9. Multimodel mean changes in annual ET and its components averaged globally over land, (a) in absolute

values and (b) as fractions of ET. (c),(d)As in (a) and (b), but over the tropics only (208S–208N). Themeaning of the

boxplot is the same as in Fig. 3. A total of 24 models with full ET partitioning in the present and future were used to

compute the changes.
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The fact that multimodel mean LAI increases in the

tropics whereas mean transpiration decreases (both in

absolute terms and as a fraction of ET) suggests that the

negative impact of increased atmospheric CO2 levels

on stomatal conductance (Cowan 1978) compensates

the increase in transpiration that could be expected

based on increases in LAI. To investigate this hypoth-

esis, we analyze changes in ET partitioning from six

models from the CMIP5 experiments CTL, RAD, and

PHYS, which allow us to separate the radiative and

physiological effects of atmospheric CO2 increase (see

section 2). Figure 12 shows that in the six models ana-

lyzed, overall changes in precipitation, ET, ET parti-

tioning, and LAI in the CTL simulation are qualitatively

consistent with multimodel mean changes from the

larger CMIP5 ensemble (Figs. 7, 8, and 11). In partic-

ular, despite overall LAI increases, changes in tran-

spiration include a clear decrease throughout the

tropics and an increase in soil evaporation, similar to

Fig. 8. Figure 12 (third row) shows that this tropical

decrease in transpiration is largely due to the physio-

logical effect of CO2. In PHYS, CO2 fertilization largely

increases LAI, which could be expected to lead to an

increase in transpiration; however, this effect is more

than offset by the stomatal closure induced by higher

atmospheric CO2 levels (Cowan 1978), so that total

transpiration is strongly reduced. (This is reflected in

total ET, which decreases as well.) Increases in LAI in

PHYS lead to increases in canopy interception, and

generally to decreases in soil evaporation, except along

the equator where a slight increase in soil evaporation

is detectable. However, the increase in soil evaporation

in the tropics in CTL appears to be primarily due to the

radiative effect of CO2, in particular over central Af-

rica. The radiative effect of CO2 in RAD is to reduce

vegetation in the tropics, presumably from the negative

effect on higher temperatures and possibly vapor

pressure deficit on photosynthesis in a warm environ-

ment. This leads to a shift towardmore soil evaporation

and less canopy interception. At higher latitudes, in

contrast, vegetation increases, and all three compo-

nents of ET increase, which likely reflect the effect of

increased temperature and precipitation from radia-

tively induced global warming. These increases in all

three terms dominate the overall changes in CTL in

these regions; indeed, changes in PHYS mostly include

only a slight decrease in transpiration.

Finally, we note that, in response to reduced ET,

physiologically induced changes in precipitation of both

signs occur in PHYS in the tropics, as well a smaller

precipitation decreases in the middle to high latitudes.

This is consistent with previous studies (Pu and

Dickinson 2014; Skinner et al. 2017) that interpret this

pattern as reflecting, in the middle to high latitudes,

reduced precipitation recycling, whereas in the tropics

reduced ET also leads to changes in circulation and

moisture convergence, resulting in a more heteroge-

neous pattern of precipitation change. In most land re-

gions, however, the overall precipitation signal in CTL

appears dominated by changes from RAD. One excep-

tion is perhaps over the Amazon, where changes from

PHYS appear to contribute largely. This suggests that in

Fig. 7, while most of the spatial correspondence between

changes in precipitation and ET reflects the impact of

the former over the latter, over tropical South America

the causal relationship is partly reversed: physiologically

induced reductions in transpiration lead to a decrease in

FIG. 10. Cross-model correlations of projected changes (between

1950–2005 and 2071–2100) in the mean annual fractions of

(a) transpiration and soil evaporation, (b) transpiration and canopy

interception, and (c) soil evaporation and canopy interception. A

total of 24models with full ET partitioning in the present and in the

future are used.

15 MAY 2019 BERG AND SHEFF I E LD 2665

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 03/03/22 07:14 PM UTC



precipitation. This is consistent with similar but single-

model recent analysis (e.g., Kooperman et al. 2018).

Overall, Fig. 12 confirms that the decrease in tran-

spiration in the tropics in Fig. 7 is primarily caused by the

physiological effect of CO2. Model differences in pro-

jected changes in the fraction of transpiration thus likely

reflect differences in combined changes in LAI and

stomatal conductance, and hence there is no clear re-

lationship between changes in LAI alone and transpi-

ration changes in the tropics (Fig. 11b). Because of the

physiologically induced transpiration decrease, the

change in total ET in the tropics is not as large as it

would be based on the radiative effect of CO2 alone.

However, Fig. 8 shows that this decrease is offset, to

some extent, by radiatively induced increases in soil

evaporation, as well as by small increases in canopy in-

terception resulting from the physiologically induced

increase in LAI. The total change in ET in the tropics

thus comes about as the result of opposite changes in

different components of ET partitioning, driven by dif-

ferent physical and biological processes.

4. Discussion and conclusions

We have comprehensively investigated how ET par-

titioning is represented in CMIP5 climate simulations of

present and future climate. Large model spread in ET

partitioning exists, with the fraction of transpiration, for

instance, ranging between 15% and 60%, and with cor-

responding differences in other components. Models

even showdifferences inwhich component dominatesET

globally. The mean spatial pattern of ET partitioning can

be primarily explained by the effect of vegetation distri-

bution, as was also reported recently in Lian et al. (2018).

Many differences in model parameterization of

surface–atmosphere energy and water processes likely

contribute to model spread in ET partitioning. Here, we

show that not only the multimodel mean, or model-

specific spatial pattern (Lian et al. 2018), but also the

model spread in ET partitioning appears strongly linked

to model differences in vegetation LAI, with, locally,

models with more vegetation exhibiting greater transpi-

ration and canopy interception fractions, and reduced soil

FIG. 11. (a) Multimodel mean projected change between 1950–2005 and 2071–2100 in mean annual LAI, and cross-model correlations

of projected changes in LAI and changes in fractions of (b) transpiration, (c) soil evaporation, and (d) canopy interception. A total of 18

common models with available present and future LAI and ET partitioning were used. Red and blue contour lines indicate positive and

negative correlations, respectively, that are significant at the 5% level.
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evaporation. We do not seek here to explicitly investi-

gate why models differ in the representation of LAI. As

indicated earlier, some models use prescribed values,

although most simulate LAI interactively. Even in the

case where LAI is prescribed, different data sources

or differences in how different land cover types and

land use transitions are implemented, for instance (e.g.,

de Noblet-Ducoudré et al. 2012), can lead to differ-

ent LAI values. Among models with prescribed LAI,

mean global LAI ranges from 0.9 (MIROC5h) to 1.9

(ACCESS1.0). Among models that simulate vegetation

interactively, we find a strong correlation across models

between LAI and gross primary production (GPP; not

shown), which suggests that model differences in the

FIG. 12. Multimodel mean changes in (row 1) precipitation, (row 2) ET, (row 3) transpiration, (row 4) soil evaporation, (row 5) canopy

interception, and (row 6) LAI in simulations (left) CTL, (center) RAD, and (right) PHYS, between the first and last 30 years of each

simulation (see text in section 2).All changes are inmmday21 except for LAI, which is unitless. Stippling indicates where 5 out of 6models

agree on the sign of change. For readability, colors saturate outside the range of the color scale.
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simulation of photosynthesis are partly responsible for

model differences in LAI (although the latter can also

feed back on GPP).

As mentioned in the introduction, although the com-

ponents of ET can be measured in different ways at the

site scale, ET partitioning is not accurately known at the

global or even regional scale. Global remote sensing

products of ET, for instance, produce vastly different

estimates of ET partitioning (Miralles et al. 2016); while

the first-order global spatial patterns of ET partitioning

in these products show a general agreement with that in

CMIP5 models (Fig. 1), they provide little constraint on

the amplitude of the different ET components. How-

ever, as mentioned in the introduction, a review of the

different estimates of the fraction of transpiration from

multiple independent sources—including satellite-based

estimations, reanalysis, land surface models, isotopic

measurements, and upscaled site measurements—

indicates a central mean value around 60% (e.g., Wei

et al. 2017). This suggests that the mean transpiration

fraction in CMIP5 models (Fig. 3) is underestimated, as

Wei et al. (2017) note. Certainly, values lower than 40%

appear inconsistent with the general understanding of

the role of transpiration in global ET (Lawrence et al.

2007). The BCC-CSM1.m, BNU-ESM, CanESM2, and

FGOALS models have global transpiration fractions

lower than 30% (Fig. S1). These models are also among

those with the highest soil evaporation fractions. The

GISS family of models also exhibits low transpiration

fractions and the highest fractions of canopy intercep-

tion. Models with transpiration fractions greater

than 50% include models from the IPSL, NCAR, Nor-

ESM, and CNRM families of models. Only the IPSL-

CM5A-MRmodel exhibits a transpiration fraction close

to 60%.

The positive relationship, across models, between the

transpiration fraction and vegetation amount shown on

Fig. 5a could suggest, at first glance, that models un-

derestimate mean transpiration fractions because they

generally underestimate LAI. However, several studies

have evaluated vegetation in climate models and have

found, on the contrary, that most models tend to over-

estimate LAI compared to satellite observations, by up

to a factor 2 or more, and that this is true at all latitudes

(Anav et al. 2013; Mahowald et al. 2016; Zeng et al.

2016). For instance, models with the highest LAI, here,

include the GFDL-ESM2M, GFDL-ESM2G and MRI-

ESM models, with global LAI values between 2.9 and

3.1, while long-term satellite measurements indicate a

global mean closer to 1.5 (Anav et al. 2013; Zeng et al.

2016). The overestimation of LAI in climate models has

been linked with the general overestimation of GPP also

simulated by these models, itself possibly linked to

omission of nutrient constraints or of the negative ef-

fects of atmospheric ozone (Anav et al. 2013). As in-

dicated above, we do find that GPP and LAI are

positively correlated across models, which would sup-

port this interpretation. Regardless of what is causing

models to overestimate LAI, this overestimation suggest

that climate models are not underestimating the role of

transpiration simply because they are underestimating

vegetation, but rather that they are underestimating the

relationship between vegetation cover and transpiration

fraction. In other words, for a given amount of vegeta-

tion cover, systematic biases in model parameterizations

of various land–atmosphere biophysical processes di-

rectly influencing ET partitioning lead to an un-

derestimation of transpiration. Lian et al. (2018)

recently reached a similar conclusion. Because of the

generally positive relationship between LAI and tran-

spiration fraction, forcing the CMIP5 ensemble of cli-

mate models with the observed LAI would actually

enhance the overall underestimation of the transpira-

tion fraction in these models. For instance, if over each

pixel we use a linear relationship between LAI and

transpiration fraction derived from Fig. 5a, combined

with observed LAI values (from the AVHRR GIMMS

LAI3g dataset; Zhu et al. 2013), this yields transpiration

fractions that average globally to 37%, compared to an

initial multimodel mean of 44% (over areas where

AVHRR GIMMS LAI3g provides data). We also em-

phasize here that the relationship between LAI and

transpiration fraction on Fig. 5a is essentially a local one.

Indeed, while most models overestimate LAI globally,

they show different spatial patterns: some models sim-

ulate proportionally more LAI at high latitudes, for in-

stance. Consequently, the ranking of the different

models in terms of how much LAI they simulate is not

spatially constant across the globe (not shown). When

taking global averages of LAI and transpiration to

compute the correlation at the global scale, these spatial

differences tend to compensate each other. As a result,

this obscures the local relationship between LAI and

transpiration fraction (Fig. 5a), and the positive re-

lationship does not hold well at the global scale (i.e.,

using global averages; r5 0.18). For instance, the model

with the largest global LAI, MRI-ESM (global LAI of

3.1), does not have the highest transpiration fraction

overall (39%); IPSL-CM5A-MR exhibits the highest

fraction (60%) with a global LAI of 1.9. This highlights

the importance of analyzing model biases at the

regional scale.

By complementarity, the fact that climate models

underestimate the fraction of transpiration means that

they overestimate the share of soil evaporation and/or

canopy interception. Miralles et al. (2010) provide a
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global estimate of canopy interception, which they ob-

tain by driving an analytical model with observations.

While, again, the overall pattern of canopy interception

in CMIP5models (Fig. 1) generally agrees, qualitatively,

with this estimate, Lian et al. (2018) note that models

seem to overestimate the amount of canopy interception

globally. Closer examination, here, shows that while

models seem to simulate a reasonable ratio of canopy

interception to precipitation in the middle and high

latitudes, they largely overestimate this ratio in the

tropics, with values around 20%–25% (not shown),

whereas Miralles et al. (2010) report values closer to

10%–15%. These suggest that models may overestimate

interception especially in the tropics, which thus po-

tentially explains why they underestimate transpiration

at least in those regions. It is worth keeping in mind,

however, thatMiralles et al. (2010) only derive estimates

for tall forests around the world and do not consider

shorter vegetation, which might render the comparison

with climate models problematic in some regions.

Besides canopy interception, inaccurate representa-

tion of canopy light use and root water uptake processes

in landmodels have been suggested to be responsible for

the underestimation of transpiration (Lian et al. 2018).

Chang et al. (2018) also implicate the role of model

deficiencies in (or absence of) the representation of

lateral water flow and water vapor diffusion within the

soil, while Maxwell and Condon (2016) also point out

the necessary role of groundwater flow, generally not

accounted for in land models, for sustaining higher

transpiration fractions. Further work will likely identify

additional sources of land model biases. Some studies

have described deliberate efforts to increase the tran-

spiration fraction in land models at the expense of the

other components, for instance by modifying formula-

tions and parameters to increase water infiltration and

access of vegetation roots to soil water, reduce canopy

interception, or increase soil resistance to evaporation

(Lawrence et al. 2007; Williams et al. 2016). However, a

tension exists between implementing such modifications

and potential unintended effects on other aspects of

simulated climate or projections (Lawrence et al. 2007).

Overall, most current models fail to correctly capture

the fundamental role that vegetation exerts on the water

cycle through transpiration.

Our analysis further shows that biases in ET parti-

tioning have implications for climate simulations. Dif-

ferences in ET partitioning across models are associated

with differences in land–atmosphere fluxes and surface

climate: for a given amount of ET, models that have

lower transpiration and more soil evaporation tend to

be warmer in summer over large continental regions.

Given the systematic underestimation of transpiration

by climate models shown here, this also suggests that

model biases in ET partitioning may play a role in the

well-known warm biases over continents in summer

(e.g., Cheruy et al. 2014). Although model differences in

(present day) ET partitioning may also influence model

spread in future projections of land hydroclimate (e.g.,

models with less transpiration warming more), our

analysis revealed no clear evidence of such a relation-

ship across the CMIP5 ensemble; it may be that the

potentially modest impacts of differences in (present

day) ET partitioning are masked by the many other

model differences affecting climate model projections.

Although we have not explored these aspects in the

present study, biases in ET partitioning may also carry

implications for the simulated carbon cycle: because

transpiration is coupled to the carbon cycle through

photosynthesis, systematic underestimation of transpi-

rationmeans that Earth systemmodel simulations of the

carbon cycle, in particular of the land carbon sink, may

also be biased in some systematic ways—or perhaps

other parts of Earth systemmodels are compensating for

transpiration biases in an ad hoc manner.

Finally, we have shown that despite very large model

diversity in the simulation of present-day ET partition-

ing, models project consistent changes in partitioning in

the future. While all three ET components tend to

change in similar directions (in absolute terms) in many

regions of the middle to high latitudes and the dry sub-

tropics, in the tropics, models project a clear pattern of

decreased transpiration and increased soil evaporation,

both in fractions and in absolute terms. This decrease in

transpiration is clearly attributable to the physiological

impact of CO2 increase, which induces stomatal closure.

Overall, future changes in partitioning are caused by a

mix of radiatively and physiologically driven processes

that affect the components of ET in different ways in

different regions. This underscores the complexity of the

evaporation response to global warming on land, and

the challenges of both accurately capturing that re-

sponse in numerical models and accounting for it in

idealized models of the water and climate system (e.g.,

Byrne and O’Gorman 2016). This challenge is all the

more critical in that this response represents a key ele-

ment of future climate change: for instance, herewe found,

consistently with previous studies (e.g., Kooperman et al.

2018), that part of the precipitation response to anthro-

pogenic forcing in the tropics is due to physiologically

induced decreases in transpiration. More generally, previ-

ous studies have highlighted the role of land evaporation

changes in land regional climate change (e.g., Berg et al.

2015) but also in large-scale land–ocean contrasts in re-

sponse to warming (e.g., Berg et al. 2016) and in aspects

of the global hydrological cycle response to CO2 (e.g.,
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DeAngelis et al. 2016). Correct representation of changes

in land evaporation, and thus in its components, is thus

essential for projections of global climate change.

Overall, our results highlight model differences in the

simulation of ET partitioning. Given the importance of

this partitioning for the simulation of the terrestrial

water, energy, and carbon cycle in the present and in

future climate, our study points to the critical need to

better evaluate, and ultimately improve, the process-

based representation of ET partitioning in Earth

system models.
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